Spatial-Temporal Generative AI for Traffic Flow Estimation with Sparse Data of Connected Vehicles

Date:

arXiv:2407.08034v1 Announce Type: new
Abstract: Traffic flow estimation (TFE) is crucial for intelligent transportation systems. Traditional TFE methods rely on extensive road sensor networks and typically incur significant costs. Sparse mobile crowdsensing enables a cost-effective alternative by utilizing sparsely distributed probe vehicle data (PVD) provided by connected vehicles. However, as pointed out by the central limit theorem, the sparsification of PVD leads to the degradation of TFE accuracy. In response, this paper introduces a novel and cost-effective TFE framework that leverages sparse PVD and improves accuracy by applying the spatial-temporal generative artificial intelligence (GAI) framework. Within this framework, the conditional encoder mines spatial-temporal correlations in the initial TFE results derived from averaging vehicle speeds of each region, and the generative decoder generates high-quality and accurate TFE outputs. Additionally, the design of the spatial-temporal neural network is discussed, which is the backbone of the conditional encoder for effectively capturing spatial-temporal correlations. The effectiveness of the proposed TFE approach is demonstrated through evaluations based on real-world connected vehicle data. The experimental results affirm the feasibility of our sparse PVD-based TFE framework and highlight the significant role of the spatial-temporal GAI framework in enhancing the accuracy of TFE.

Share post:

Subscribe

Popular

More like this
Related

모듈식 모터 및 기어박스로 제품 개발이 간편해집니다.

후원자: 맥슨의 Parvalux.경쟁에서 승리하려면 엔지니어는 개발 시간을 단축하고 제품...

Draganfly, 병원 드론 배달 개념 증명 비행 완료

Draganfly는 Brigham 장군의 개념 증명을 통해 드론이 의료 분야의...

2024년 기후 기술 상위 10개 스토리

2024년에는 기후변화에 대처하는 기술 전기를 생산하는 연을 타고 구름...

Microsoft의 AI 생태계가 Salesforce 및 AWS를 능가하는 방법

AI 에이전트 일반적으로 사람의 개입이 필요한 작업을 수행하도록 설계된...