Code Hallucination

Date:

arXiv:2407.04831v1 Announce Type: new
Abstract: Generative models such as large language models are extensively used as code copilots and for whole program generation. However, the programs they generate often have questionable correctness, authenticity and reliability in terms of integration as they might not follow the user requirements, provide incorrect and/or nonsensical outputs, or even contain semantic/syntactic errors – overall known as LLM hallucination. In this work, we present several types of code hallucination. We have generated such hallucinated code manually using large language models. We also present a technique – HallTrigger, in order to demonstrate efficient ways of generating arbitrary code hallucination. Our method leverages 3 different dynamic attributes of LLMs to craft prompts that can successfully trigger hallucinations from models without the need to access model architecture or parameters. Results from popular blackbox models suggest that HallTrigger is indeed effective and the pervasive LLM hallucination have sheer impact on software development.

Share post:

Subscribe

Popular

More like this
Related

12월24일 정부지원사업 신규 공고 리스트 (16건) _ (파일 재가공/재배포 가능)

12월 24일 16건<12/24지원사업 신규 공고 목록> *전 영업일인 12/23에 올라온...

모듈식 모터 및 기어박스로 제품 개발이 간편해집니다.

후원자: 맥슨의 Parvalux.경쟁에서 승리하려면 엔지니어는 개발 시간을 단축하고 제품...

Draganfly, 병원 드론 배달 개념 증명 비행 완료

Draganfly는 Brigham 장군의 개념 증명을 통해 드론이 의료 분야의...

2024년 기후 기술 상위 10개 스토리

2024년에는 기후변화에 대처하는 기술 전기를 생산하는 연을 타고 구름...