Discounted Pseudocosts in MILP

Date:

arXiv:2407.06237v1 Announce Type: new
Abstract: In this article, we introduce the concept of discounted pseudocosts, inspired by discounted total reward in reinforcement learning, and explore their application in mixed-integer linear programming (MILP). Traditional pseudocosts estimate changes in the objective function due to variable bound changes during the branch-and-bound process. By integrating reinforcement learning concepts, we propose a novel approach incorporating a forward-looking perspective into pseudocost estimation. We present the motivation behind discounted pseudocosts and discuss how they represent the anticipated reward for branching after one level of exploration in the MILP problem space. Initial experiments on MIPLIB 2017 benchmark instances demonstrate the potential of discounted pseudocosts to enhance branching strategies and accelerate the solution process for challenging MILP problems.

Share post:

Subscribe

Popular

More like this
Related

RBR50 요약 : 로봇 공학 혁신에 대한 스포트라이트

로봇 보고서 팟 캐스트 · RBR50 요약 : 로봇...

Picknik의 MoveitPro와 함께 haptic 컨트롤러를 제공하는 거친 로봇 공학

Haply Robotics의 Inverse3 시스템을 통해 운영자는 실시간 힘 피드백을받는...

웹 세미나의 AI 진보를 설명하는 로봇 피킹 전문가

Ambi, ABB 및 Plus One 은이 무료 웹 세미나에서...

비디오 금요일 : RIVR은 패키지를 제공합니다

Video Friday는 친구가 수집 한 주별 멋진 로봇 비디오입니다....