Beyond the Veil of Similarity: Quantifying Semantic Continuity in Explainable AI

Date:

arXiv:2407.12950v1 Announce Type: new
Abstract: We introduce a novel metric for measuring semantic continuity in Explainable AI methods and machine learning models. We posit that for models to be truly interpretable and trustworthy, similar inputs should yield similar explanations, reflecting a consistent semantic understanding. By leveraging XAI techniques, we assess semantic continuity in the task of image recognition. We conduct experiments to observe how incremental changes in input affect the explanations provided by different XAI methods. Through this approach, we aim to evaluate the models’ capability to generalize and abstract semantic concepts accurately and to evaluate different XAI methods in correctly capturing the model behaviour. This paper contributes to the broader discourse on AI interpretability by proposing a quantitative measure for semantic continuity for XAI methods, offering insights into the models’ and explainers’ internal reasoning processes, and promoting more reliable and transparent AI systems.

Share post:

Subscribe

Popular

More like this
Related

RBR50 요약 : 로봇 공학 혁신에 대한 스포트라이트

로봇 보고서 팟 캐스트 · RBR50 요약 : 로봇...

Picknik의 MoveitPro와 함께 haptic 컨트롤러를 제공하는 거친 로봇 공학

Haply Robotics의 Inverse3 시스템을 통해 운영자는 실시간 힘 피드백을받는...

웹 세미나의 AI 진보를 설명하는 로봇 피킹 전문가

Ambi, ABB 및 Plus One 은이 무료 웹 세미나에서...

비디오 금요일 : RIVR은 패키지를 제공합니다

Video Friday는 친구가 수집 한 주별 멋진 로봇 비디오입니다....