Beyond the Veil of Similarity: Quantifying Semantic Continuity in Explainable AI

Date:

arXiv:2407.12950v1 Announce Type: new
Abstract: We introduce a novel metric for measuring semantic continuity in Explainable AI methods and machine learning models. We posit that for models to be truly interpretable and trustworthy, similar inputs should yield similar explanations, reflecting a consistent semantic understanding. By leveraging XAI techniques, we assess semantic continuity in the task of image recognition. We conduct experiments to observe how incremental changes in input affect the explanations provided by different XAI methods. Through this approach, we aim to evaluate the models’ capability to generalize and abstract semantic concepts accurately and to evaluate different XAI methods in correctly capturing the model behaviour. This paper contributes to the broader discourse on AI interpretability by proposing a quantitative measure for semantic continuity for XAI methods, offering insights into the models’ and explainers’ internal reasoning processes, and promoting more reliable and transparent AI systems.

Share post:

Subscribe

spot_imgspot_img

Popular

More like this
Related

Microrobot 시스템

Artedrone은 카테터가 뇌졸중 환자의 혈전을 회수하는 데 도움이되는 자석과...

Mbodi AI는 Y 콤비네이터에서 출시되어 산업용 로봇을위한 구체화 된 AI 개발

Mbodi는 ABB Robotics와 같은 파트너와 협력하고 있습니다. 출처 :...

Orbit 5.0은 Boston Dynamics의 Spot Quadruped Robot에 기능을 추가합니다.

Spot Quadruped의 궤도 5.0은 AI를 사용하여 사이트 건강에 대한...

VR에서 더 나은 시간 동안 자신을 해킹하십시오

헤드셋 하드웨어와 사려 깊은 소프트웨어 디자인의 발전에도 불구하고 가상...