Assurance of AI Systems From a Dependability Perspective

Date:

arXiv:2407.13948v1 Announce Type: new
Abstract: We outline the principles of classical assurance for computer-based systems that pose significant risks. We then consider application of these principles to systems that employ Artificial Intelligence (AI) and Machine Learning (ML). A key element in this “dependability” perspective is a requirement to have near-complete understanding of the behavior of critical components, and this is considered infeasible for AI and ML. Hence the dependability perspective aims to minimize trust in AI and ML elements by using “defense in depth” with a hierarchy of less complex systems, some of which may be highly assured conventionally engineered components, to “guard” them. This may be contrasted with the “trustworthy” perspective that seeks to apply assurance to the AI and ML elements themselves. In cyber-physical and many other systems, it is difficult to provide guards that do not depend on AI and ML to perceive their environment (e.g., other vehicles sharing the road with a self-driving car), so both perspectives are needed and there is a continuum or spectrum between them. We focus on architectures toward the dependability end of the continuum and invite others to consider additional points along the spectrum. For guards that require perception using AI and ML, we examine ways to minimize the trust placed in these elements; they include diversity, defense in depth, explanations, and micro-ODDs. We also examine methods to enforce acceptable behavior, given a model of the world. These include classical cyber-physical calculations and envelopes, and normative rules based on overarching principles, constitutions, ethics, or reputation. We apply our perspective to autonomous systems, AI systems for specific functions, generic AI such as Large Language Models, and to Artificial General Intelligence (AGI), and we propose current best practice and an agenda for research.

Share post:

Subscribe

Popular

More like this
Related

4월 4일 정부지원사업 신규 공고 리스트 (106건) _ (파일 재가공/재배포 가능)

4월 4일 106건<4/4 지원사업 신규 공고 목록> *전 영업일인 4/3에...

미국 정부 정책 이동은 로봇 공학, 노트 패널리스트를위한 기회를 제공합니다.

생생한 행성은 토지 관리 및 화재 완화, 연방 정부의...

민첩성 로봇 공학은 Digit Humanoid의 최신 발전을 선보입니다

Digit Humanoid는 Promat 2025에서 최신 기능을 보여줍니다. 출처 :...

IEEE Education Week의 이벤트 가이드

기술이 발전함에 따라 최신 발전과 기술로 최신 상태를 유지하는...