A mathematical framework of intelligence and consciousness based on Riemannian Geometry

Date:

arXiv:2407.11024v1 Announce Type: new
Abstract: Understanding intelligence is a central pursuit in neuroscience, cognitive science, and artificial intelligence. Intelligence encompasses learning, problem-solving, creativity, and even consciousness. Recent advancements in geometric analysis have revealed new insights into high-dimensional information representation and organisation, exposing intrinsic data structures and dynamic processes within neural and artificial systems. However, a comprehensive framework that unifies the static and dynamic aspects of intelligence is still lacking. This manuscript proposes a mathematical framework based on Riemannian geometry to describe the structure and dynamics of intelligence and consciousness. Intelligence elements are conceptualised as tokens embedded in a high-dimensional space. The learned token embeddings capture the interconnections of tokens across various scenarios and tasks, forming manifolds in the intelligence space. Thought flow is depicted as the sequential activation of tokens along geodesics within these manifolds. During the navigation of geodesics, consciousness, as a self-referential process, perceives the thought flow, evaluates it against predictions, and provides feedback through prediction errors, adjusting the geodesic: non-zero prediction errors, such as learning, lead to the restructuring of the curved manifolds, thus changing the geodesic of thought flow. This dynamic interaction integrates new information, evolves the geometry and facilitates learning. The geometry of intelligence guides consciousness, and consciousness structures the geometry of intelligence. By integrating geometric concepts, this proposed theory offers a unified, mathematically framework for describing the structure and dynamics of intelligence and consciousness. Applicable to biological and artificial intelligence, this framework may pave the way for future research and empirical validation.

Share post:

Subscribe

Popular

More like this
Related

RBR50 요약 : 로봇 공학 혁신에 대한 스포트라이트

로봇 보고서 팟 캐스트 · RBR50 요약 : 로봇...

Picknik의 MoveitPro와 함께 haptic 컨트롤러를 제공하는 거친 로봇 공학

Haply Robotics의 Inverse3 시스템을 통해 운영자는 실시간 힘 피드백을받는...

웹 세미나의 AI 진보를 설명하는 로봇 피킹 전문가

Ambi, ABB 및 Plus One 은이 무료 웹 세미나에서...

비디오 금요일 : RIVR은 패키지를 제공합니다

Video Friday는 친구가 수집 한 주별 멋진 로봇 비디오입니다....