Towards Automated Functional Equation Proving: A Benchmark Dataset and A Domain-Specific In-Context Agent

Date:

arXiv:2407.14521v1 Announce Type: new
Abstract: Automated Theorem Proving (ATP) faces challenges due to its complexity and computational demands. Recent work has explored using Large Language Models (LLMs) for ATP action selection, but these methods can be resource-intensive. This study introduces FEAS, an agent that enhances the COPRA in-context learning framework within Lean. FEAS refines prompt generation, response parsing, and incorporates domain-specific heuristics for functional equations. It introduces FunEq, a curated dataset of functional equation problems with varying difficulty. FEAS outperforms baselines on FunEq, particularly with the integration of domain-specific heuristics. The results demonstrate FEAS’s effectiveness in generating and formalizing high-level proof strategies into Lean proofs, showcasing the potential of tailored approaches for specific ATP challenges.

Share post:

Subscribe

spot_imgspot_img

Popular

More like this
Related

Photoneo는 로봇 인식을 향상시키기 위해 MotionCAM-3D 컬러 (파란색)를 출시합니다

MotionCam 3D Color (Blue)는이 팔레팅 응용 프로그램에서와 같이 거리에서...

Rainbow Robotics는 전 방향 바퀴, 이중 암 로봇을위한 개발 키트를 공개합니다.

RB-Y1에는 휠 모바일 플랫폼에 장착 된 두 개의 암이...

10 로봇 트렌드는 2025 년에 발견되었습니다

지난 주 디트로이트에서 2025 년을 소집했습니다. 출처 : 로봇...

한 명의 운전자, 두 트럭 : 이것이화물의 미래입니까?

쌍의 쌍 반 트럭 콜럼버스, 오하이오 및 인디애나 폴리스...